Learning Texture Discrimination Rules in a Multiresolution System

نویسندگان

  • Hayit Greenspan
  • Rodney M. Goodman
  • Rama Chellappa
  • Charles H. Anderson
چکیده

We describe a texture analysis system in which informative discrimination rules are learned from a multiresolution representation of the textured input. The system incorporates un-supervised and supervised learning via statistical machine learning and rule-based neural networks, respectively. The textured input is represented in the frequency-orientation space via a log-Gabor pyramidal decomposition. In the unsupervised learning stage a statistical clustering scheme is used for the quantization of the feature-vector attributes. A supervised stage follows in which labeling of the textured map is achieved using a rule-based network. Simulation results for the texture classiication task are given. An application of the system to real-world problems is demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Region Completion in a Texture using Multiresolution Transforms

Abstract Natural images, textures and photographs are likely to be impaired by stains.  As a result a substantial portion of the image remains blurred. However, a method called region completion is adopted to fill in the tainted part by using the information from the portion left unblemished by stains. A novel method to perform this operation is proposed in this paper. The three significant sta...

متن کامل

Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems

Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually ...

متن کامل

Multiresolution Image Parametrization for Improving Texture Classification

In the paper an innovative alternative to automatic image parametrization on multiple resolutions, based on texture description with specialized association rules, and image evaluation with machine learning methods is presented. The algorithm ArTex for parameterizing textures with association rules belonging to structural parametrization algorithms was developed. In order to improve the classif...

متن کامل

Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns

This paper presents a theoretically very simple yet efficient multiresolution approach to gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns termed ‘uniform’ are fundamental properties of local image texture, and their...

متن کامل

Theory of texture discrimination of based on higher-order perturbations in individual texture samples

This analysis addresses the issue that texture properties are defined on ensembles of possible textures, while psychophysical judgments of texture properties must be made on individual texture samples, or regions of uniform texture within a larger texture field. Since the basic discrimination task requires comparison of two sample images (or regions) specified by different ensemble rules, the v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1994